
Primary-Secondary-Resolvers

Membership Proof Systems

and their Applications to DNSSEC

Sharon Goldberg, Moni Naor, Dimitris Papadopoulos,

Leonid Reyzin, Sachin Vasant, Asaf Ziv

Weizmann Institute

2

The (non) membership problem

• Database R of n elements from universe U
– With object xR associated information y

• Want to allow lookups in R such that

– If xR then answer is ‘yes’ and associated y retrieved

– If xR then answer is ‘no’

• Don’t want to leak more information than this!

• Entity providing answer: not trusted wrt to

correctness.

Primary Secondary Resolver
Trusted,

Offline

Not trusted,

Online
Has xU
knows primary’ public key

Learns if

x is in R

Motivation: Secure DNS Lookups

• DNS: Domain Name Server

– Allows the translation of names to IP Addresses

– Plain DNS does not guarantee authenticity to users

• DNSSEC: Security extension of DNS

– Retrieved records are authenticated (signed)

– What about non-exiting records? Denial of existence

– Current methods leak information about the set

– Allow `zone enumeration’

• Want to improve DNSSEC

Example.com: 172.16.254.1

Listing all names in a domain

How NSEC Works (Roughly)
• The primary signs all existing records

– plus link to the next record in sorted order

– Gives all signatures to secondary

– Public key: signing key

• Given query x
– If xR then secondary gives signature on record

– If xR then proof of non existence is:

signed pair (x1, x2) such that x1 < x < x2

4Trusted,

Offline

Not trusted,

Online
Has xU

knows primary’ public key

Primary Secondary Resolver

After a while: learn all of R
• Even random queries

Is Zone Enumeration a Real Problem?

Much debate in the networking world:After all this is

public information?

• There is a difference between willing to answer

questions and revealing everything you know

• Enumerating hostnames creates a toehold for more

complex attacks

• Legal reasons to protect host names (e.g. EU Data

Protection laws)

• IETF rewrote the DNSSEC standard to `deal' with

this issue in 2008

How NSEC3 Works (Roughly)

• Instead of storing x itself: store h(x)
– h is some one-way/random oracle function

• The problem is now similar to the case where one is

given oracle access to the membership function

– At best: this is an obfuscated membership

program and allows the adversary ``unlimited”

queries

• Bernstein’s NSEC3 walker

May also add salt

What Do We Have to Say
• Model the problem

– Primary-Secondary-Resolvers Membership Proof

Systems

• Explain why current attempts have all failed

– Show that the secondary must be performing online

public-key authentication

– Can convert to signatures in some circumstances

• Suggest various constructions to PSRs
– Based on RSA plus random oracles

– Based on VRFs and VUFs

– Based on HIBEs

NSEC5

Completeness, Soundness &

Privacy (Zero-Knowledge)

How Our NSEC5 Works (Roughly)

• Instead of storing x itself: store

F(x)=h2(RSA-1(h1(x)))

where h1 and h2 are random oracles

• Unlike h(x) in NSEC3: not everybody can compute it.

• Equip the secondary with the RSA secret key

• To prove that F(x)=z:
– secondary sends S(x)=RSA-1(h1(x))

• Resolver needs to know public RSA key

– One additional RSA computation

Plays the role of

h(x) in NSEC3

How NSEC5 Works (Roughly)
Primary preparation

• Choose Signing key plus RSA key (N,e) and hash functions

h1: U → [N] and h2: [N] → {0,1}λ

Denote S(x)=RSA-1(h1(x)) and F(x)=h2(S(x))

• For every xi  R compute yi=F(xi)

• Sign them in pairs by lexicographical order: Sign(yi, yi+1)

• For every xi  R also sign their values: Sign(xi, vi)

Secondary’s Public key PKS =(N,e)

Secondary’s secret key SKS =d and

• Set R and Sign(xi, vi)

• For all pairs Sign(yi, yi+1)
IS

Random oracles

NSEC5 RSA Construction
Denote S(x)=RSA-1(h1(x)) and F(x)=h2(S(x))

• For every xi  R compute yi=F(xi)

• Sign them in pairs by lexicographical order: Sign(yi, yi+1)

• For every xi  R also sign their values: Sign(xi, vi)

Secondary

• Given a query xR, the secondary returns Sign(xi, vi)

• Given query xR, the secondary returns:

Sign(yi, yi+1) and S(x) such that yi < F(x) < yi+1

A Resolver verifies query x by checking that:

– yi < h2(S(x)) =F(x) < yi+1

– RSA(S(x))=h1(x)

NSEC5 RSA Performance
Performance comparable to NSEC3

Primary: Signature on pairs Sign(yi, yi+1)

Signature on values: Sign(xi, vi)

For every xi  R compute yi=F(xi)

Secondary

• For query xR: secondary computes y=F(x) and returns:

Sign(yi, yi+1) and S(x)

A Resolver verifies query x by checking that:

– yi < h2(S(x)) =F(x) < yi+1

– RSA(S(x))=h1(x)

From lower bound:

must work

as hard as signing!

Based on

• NSEC5: Provably Preventing DNSSEC Zone

Enumeration Sharon Goldberg, Moni Naor,

Dimitris Papadopoulos, Leonid Reyzin, Sachin

Vasant, Asaf Ziv
Cryptology ePrint Archive: Report 2014/582

• PSR Membership Proof Systems, Moni Naor

and Asaf Ziv

ITCS 2015 at Weizmann Institute

• The 6th Innovations in Theoretical Computer

Science (ITCS) conference, will be held at the

Weizmann Institute of Science, Israel

January 11-13, 2015

• Deadline: Aug 8th 2014

• Program Chair: Tim Roughgarden

http://www.wisdom.weizmann.ac.il/~naor/itcs2015_main.html

• Sponsored by ACM SIGACT

