Fully Secure Attribute Based Encryption from Multilinear Maps

Sanjam Garg IBM Research UC Berkeley
Craig Gentry IBM Research
Shai Halevi IBM Research
Mark Zhandry Stanford University
ABE for Circuits
ABE for Circuits

Circuit $C, CT = Enc(C,m)$

$x_1 \quad C(x_1) = 0$

$x_2 \quad C(x_2) = 0$

$x_4 \quad C(x_4) = 1$

$x_3 \quad C(x_3) = 0$

$x_5 \quad C(x_5) = 0$

$x_7 \quad C(x_7) = 1$

$x_6 \quad C(x_6) = 1$
ABE for Circuits

Circuit $C, CT = Enc(C, m)$

- x_1 with $C(x_1) = 0$
- x_2 with $C(x_2) = 0$
- x_3 with $C(x_3) = 0$
- x_4 with $C(x_4) = 1$
- x_5 with $C(x_5) = 0$
- x_6 with $C(x_6) = 1$
- x_7 with $C(x_7) = 1$
Desired Security Model: Adaptive Security

\[b \leftarrow \{0,1\} \]

\[\text{Enc}(\mathsf{PP}, \mathsf{C}, m_b) \]

\[\mathsf{C} \text{ such that } \mathsf{C}(x_i) = 0 \forall i, m_0, m_1 \]

\[x_i \text{ such that } \mathsf{C}(x_i) = 0 \]

\[\mathsf{sk}_{x_i} \]

\[\mathsf{x}_i \]

\[\mathsf{sk}_{x_i} \]

\[\mathsf{pp} \]
Previous Constructions: Selective Security*

[GVW’13, GGHSW’13, …]

\[b \leftarrow \{0,1\} \]

\[\text{Enc}(PP, C, m_b) \]

\[x_i \text{ such that } C(x_i) = 0 \]

\[\text{sk}_{x_i} \]

* Independent and concurrent work: [Wat’14] adaptively secure FE from iO
Our Contribution

Adaptively secure ABE

• Based on dual system framework
• Composite order asymmetric m-maps
• (Relatively) simple assumptions
 • Related to common dual system assumptions
 • Circuit independent
• New garbling technique
• No complexity leveraging

ePrint: 2014/622