An Exercise in Shooting Yourself in the Foot: Automating the Cryptographer

Gilles Barthe2 \textit{Edvard Fagerholm}1 Dario Fiore2 \\
Andre Scedrov1 Benedikt Schmidt2

1University of Pennsylvania 2IMDEA Software Institute

August 19, 2014
Cryptographers – Now Obsolete
Goal: Automatically discover new crypto constructions.
Goal: Automatically discover new crypto constructions.

Story so far
- 90s crypto (padding-based encryption, modes of operation).
- This talk: structure-preserving signatures (CRYPTO 2014).
- Based on generic group analyzer tool.
Steps to synthesize structure-preserving signatures:

1. Choose random formulas for signature (from template).
2. Log if potential scheme, i.e. there is a verification equation.
3. Check potential schemes for security.

Can often directly jump to 3rd step if we have a clear goal that we are looking for.
Type II bilinear group $e : G_1 \times G_2 \rightarrow G_T$, generators g_1, g_2, g_t.

Assume keys of form:

- **Private:** $v, w \in \mathbb{Z}_p$
- **Public:** $V = g_1^v$, $W = g_1^w$

Signatures a pair $(R, S) \in G_2^2$, where

$$R = g_2^r, \quad r \leftarrow \mathbb{Z}_p,$$

$$S = Mp(v, w, r) g_2^Q(v, w, r), \quad P, Q \in \mathbb{Z}[X, X^{-1}, Y, Y^{-1}, Z, Z^{-1}]$$

Coeffs of P, Q in set $-1, 0, 1 \Rightarrow$ approx 1 million candidates for P, Q.
May brute-force all candidates in a few minutes. Finds e.g. following scheme:

Signature: \(R = g_2^r, \ S = M^{w/r}g_2^{v/r} \)

Verification: \(e(\psi(R), S) = e(V, g_2)e(W, M) \)

Scheme has the following properties:

- Existentially unforgeable under adaptive chosen message attack.
- Randomizable: Sample \(r' \leftarrow \mathbb{Z}_p^\times \), set \((R', S') = (R'^r, S'^{1/r'})\).
- \(e(V, g_2) \) can be precomputed \(\Rightarrow \) needs two pairings for verification in addition to one application of \(\psi : G_2 \rightarrow G_1 \).
- Compare to three pairings for similar scheme by Abe et al. at CRYPTO’14.

(Disclaimer: Abe et. al have some other stuff in the paper too...)
In the previous example the tool works as follows:

1. Searches for verification equation.
2. When found create interactive problem for security analysis.

Interactive GGM problem for $R = g_2^r, \ S = M^{w/r} g_2^{v/r}$

map $G1 \ast G2 \rightarrow GT.$
iso $G2 \rightarrow G1.$
input $[V,W]$ in $G1.$
oracle $o1(M:G2) =$
 sample R;
 return $[\ R, \ V*R^{-1} + M*W*R^{-1} \]$ in $G2.$

win $(wM:G2, wR:G2, wS:G2) =$
 $(wM \nLeftarrow M \nRightarrow 0 = V + W*wM - wR*wS).$