Circuit ORAM

Xiao Shaun Wang (UMD), T-H. Hubert Chan (HKU), and Elaine Shi (UMD)

US Government Investment in MPC:

NSF: ~\$25M

DARPA: ~\$25M

AFOSR: ~\$15M

IARPA, NSA: ? M

[Gordon et al. 13], [Gentry et al. 13], [Liu et al. 13], [Gentry et al. 14], [Wang et al. 14], etc.

ORAM has been optimized for a wrong metric.

w.r.t. secure computation

Traditional metric: bandwidth overhead Metric for secure computation: Circuit Size

Circuit ORAM achieves O(D log N) circuit complexity for blocks of size

 $D = \Omega(\log^2 N)$ bits

Smallest circuit size both asymptotically and in practice.

Circuit ORAM outperforms Path ORAM by 8x - 48x at 1 GB data size.

Speedup depends on what variations of Path ORAM is used.

ORAM accesses may be securely evaluated potentially at hundreds of accesses/sec for 4 MB data size

(assuming certain offline preparation)

Garbling can be done at 10⁸ gates/sec using off-the-shelf modern processors

(not counting other overhead such as OT)

Circuit ORAM:

For any $0 < \varepsilon < 1$, any N-word RAM program with block size of $\Omega(N^{\varepsilon})$ can be simulated obliviously with $O(\log N)$ runtime blowup, with inverse poly failure probability.

[Goldreich 87, stronger interpretation]: $\Omega(logN)$ runtime blowup is necessary for any block size and tolerate up to constant failure probability.

We are currently implementing Circuit ORAM over garbled circuits!

Thank You

wangxiao@cs.umd.edu