Circuit ORAM

Xiao Shaun Wang (UMD), T-H. Hubert Chan (HKU), and Elaine Shi (UMD)
US Government Investment in MPC:

- NSF: ~$25M
- DARPA: ~$25M
- AFOSR: ~$15M
- IARPA, NSA: ? M

[Gordon et al. 13], [Gentry et al. 13], [Liu et al. 13],
[Gentry et al. 14], [Keller et al. 14], [Wang et al. 14], etc.
ORAM has been optimized for a wrong metric.

w.r.t. secure computation

Traditional metric: bandwidth overhead
Metric for secure computation: Circuit Size

[Wang et al. 14]
Circuit ORAM achieves \(O(D \log N) \) circuit complexity for blocks of size
\[D = \Omega(\log^2 N) \text{ bits} \]

Smallest circuit size both asymptotically and in practice.
Circuit ORAM outperforms Path ORAM by 8x - 48x at 1 GB data size.

Empirical Results

Speedup depends on what variations of Path ORAM is used.
ORAM accesses may be securely evaluated potentially at hundreds of accesses/sec for 4 MB data size (assuming certain offline preparation)

Garbling can be done at 10^8 gates/sec using off-the-shelf modern processors (not counting other overhead such as OT)
Circuit ORAM:
For any $0 < \varepsilon < 1$, any N-word RAM program with block size of $\Omega(N^\varepsilon)$ can be simulated obliviously with $O(\log N)$ runtime blowup, with inverse poly failure probability.

On the Tightness of the ORAM Lower Bound

[Goldreich 87, stronger interpretation]: $\Omega(\log N)$ runtime blowup is necessary for any block size and tolerate up to constant failure probability.

Consider $O(1)$ client storage
We are currently implementing Circuit ORAM over garbled circuits!

Thank You

wangxiao@cs.umd.edu