Just a little of that human touch

Daniel Genkin
Technion and Tel Aviv University

Eran Tromer
Tel Aviv University

Itamar Pipman
Tel Aviv University

Laboratory for Experimental Information Security
Using full-disk encryption
Email with PGP
Elliptic curves in your browser for forward secrecy
Hardware tokens for crypto
Using bitcoins to pay
Everybody use CRYPTO
Screw the NSA
Earlier: acoustic cryptanalysis

RSA 4096-bit key extraction using microphones

Sound propagation is limited in range and frequency. What other channels are out there?
Power? Electromagnetic?

- PCs:
 - Multi-GHz clockrate
 - Many electrically noisy electronics
 - Limited physical access
- Full-bandwidth attacks are hard
- **Low-bandwidth attacks work!**

But unwieldy:

- **Power analysis**
 - requires disconnecting the target from its power supply
- **Electromagnetic analysis**
 - has short range, fiddly antenna placement
Ground-potential analysis

- **Attenuating EMI emanations**
 “Unwanted currents or electromagnetic waves? Dump them to the circuit ground!”
 (Bypass capacitors, RF shields, …)

- Device is grounded, but its “ground” potential fluctuates relative to the mains earth ground.

 Computation

 affects
 device ground

 connected to
 conductive chassis

 connected to
 shielded cables

 Even when no data, or port is turned off.
Live demo

- Meanwhile, on the other side of the VGA cable…
- Human touch key-extraction
- Luchtime attack
- Equipment
Key extraction on far side of Ethernet cable using a mobile phone
RSA, ElGamal key extraction from GnuPG in a few seconds.

Get Your Hands Off My Laptop: Physical Side-Channel Key-Extraction Attacks on PCs (extended version)

Daniel Genkin
Technion and Tel Aviv University
danielg@cs.technion.ac.il

Itamar Pipman
Tel Aviv University
itamarpi@tau.ac.il

Eran Tromer
Tel Aviv University
tromer@tau.ac.il

July 31, 2014

Abstract

We demonstrate physical side-channel attacks on a popular software implementation of RSA and ElGamal, running on laptop computers. Our attacks use novel side channels, based on the observation that the “ground” electric potential, in many computers, fluctuates in a computation-dependent way. An attacker can measure this signal by touching exposed metal on the computer’s chassis with a pencil wire, or even with a bare hand. The signal can also be measured at the remote end of Ethernet, VGA, and USB cables.

In addition to signal processing, we have extracted 4096-bit RSA keys and ElGamal keys from side channels, as well as via power analysis.