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Oblivious RAM is a cryptographic primitive for
provably obfuscating access patterns to data.
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Path ORAM partially solves this problem



Best known ORAM achieves
O(log? N/log log N) overhead [KLO'12]

Can we do

better?




Best known ORAM achieves
O(log? N/log log N) overhead [KLO'12]

Can we do
better for

restricted access
patterns?







' Bounded-degree
trees

Access patterns
with locality

> ——0 0009
o—0—0 0009
*—0—0 0009
o—0 090 0 0



' Bounded-degree
trees

” Can we do better
for these

restricted access
patterns?

Access patterns
with locality




' Bounded-degree
trees

’ Can we do better
for these

restricted access
patterns?

YES

Access patterns
with locality




Bounded-degree tree

Stack / Queue




Bounded-degree tree

" - Map (AVL




Bounded-degree tree

v'The effective overhead is O(log N)

" - Map (AVL




Bounded-degree tree

v'The effective overhead is O(log N)

ORAM: O(log? N/log log N)

- Map (AVL |



Bounded-degree tree

v'The effective overhead is O(log N)

v'Inspired by [GGHJRW’13]

v'Speedup
v'Bandwidth overhead 12x — 16x

v Circuit size 10x — 14x
Compared with Path ORAM; data size 23°

" - Map (AVL
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v'Bandwidth overhead speedup for
deque, doubly linked list - 9x




Stack / Queue

4 Open source
implementation

Map (AVL tree) on a ga bled

circuit backend

Heap coming soon

Deque
Oblivious Data Structures:
Doubly linked [WNLCSSH'14]

list
Thank You!

kartik@cs.umd.edu




