Oblivious Data Structures

Xiao Shaun Wang, Kartik Nayak, Chang Liu, T-H. Hubert
Chan, Elaine Shi, Emil Stefanov, Yan Huang

Oblivious RAM is a cryptographic primitive for
provably obfuscating access patterns to data.

Data transferred in oblivious case
Bandwidth Overhead: =

Data transferred in non-oblivious case

Data transferred in oblivious case
Bandwidth Overhead: =

Data transferred in non-oblivious case

Best known ORAM achieves
O(log? N/log log N) overhead [KLO'12]

Can we do

better?

Best known ORAM achieves
O(log? N/log log N) overhead [KLO'12]

Can we do

better?

Path ORAM partially solves this problem

Best known ORAM achieves
O(log? N/log log N) overhead [KLO'12]

Can we do

better?

Best known ORAM achieves
O(log? N/log log N) overhead [KLO'12]

Can we do
better for

restricted access
patterns?

' Bounded-degree
trees

Access patterns
with locality

> ——0 0009
o—0—0 0009
*—0—0 0009
o—0 090 0 0

' Bounded-degree
trees

” Can we do better
for these

restricted access
patterns?

Access patterns
with locality

' Bounded-degree
trees

’ Can we do better
for these

restricted access
patterns?

YES

Access patterns
with locality

Bounded-degree tree

Stack / Queue

Bounded-degree tree

" - Map (AVL

Bounded-degree tree

v'The effective overhead is O(log N)

" - Map (AVL

Bounded-degree tree

v'The effective overhead is O(log N)

ORAM: O(log? N/log log N)

- Map (AVL |

Bounded-degree tree

v'The effective overhead is O(log N)

v'Inspired by [GGHJRW’13]

v'Speedup
v'Bandwidth overhead 12x — 16x

v Circuit size 10x — 14x
Compared with Path ORAM; data size 23°

" - Map (AVL

Access patterns with locality

Access patterns with locality

v'Overhead: 41 l i

Deque, doubly linked list
O(log N)

2-dimensional grid
O(log!> N)

General graphs

0(129 logZ1/d N)
d: doubling dimension of the graph

Access patterns with locality

v"Overhead:

Deque, doubly linked list
O(log N)

2-dimensional grid

O(log!> N)

General graphs

0(129 logZ1/d N)
d: doubling dimension of the graph

_‘. L \ ‘
RIS o
——# : &
—e *— L
——9= ."._o.
_‘ | :.‘,

v'Bandwidth overhead speedup for
deque, doubly linked list - 9x

Stack / Queue

4 Open source
implementation

Map (AVL tree) on a ga bled

circuit backend

Heap coming soon

Deque
Oblivious Data Structures:
Doubly linked [WNLCSSH'14]

list
Thank You!

kartik@cs.umd.edu

